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ABSTRACT :;:/
N vy
We present some new derivationg‘ which are rather short,
and direct, of properties of a nonlinear version of a minimax
tree network location problem. The properties provide neces-

sary and sufficient conditions for optimality, a means of com-

puting the optimum objective function value, and a means of

constructing the unique optimum location.
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The purpose of this note is to provide unew, rather short, and direct
proofs for properties, established by DEARING [ 4], of a quite general non-
linear minimax location problem. As a natural consequence of the approach
we use, we obtain as well a new family of equivalent conditions for opti-
mality to the problem.

So as to state the problem, we suppose we are given a finite undirected
tree network with positive arc lengths. We demnote by T an imbedding of the jgiven
tree (e.g., a planar imbedding such as a road network) having rectifiable arcs,
so that it is meaningful to speak of points on the arcs as well as at vertices.

For every pair of points x and y, x,yeT, we suppose the distance between
x and y, d(x,y), to be well defined, as in reference 2. The distance has the
customary properties for every x,yeT, that d(x,y) 2 0; that d(x,y) = 0 iff
x = y; and that d(x,y) = d(y,x); also d(x,y) S d(x,z) + d(z,y) for every
X,y,2€T.

The problem of interest is as follows. Suppose "existing facilities"

are at distinct vertex locations Vi oeees Vo in the tree, and that a "new facility"

is to be located at x. For each vertex v, fi[d(x’vi)] is a "cost" or a
"loss" incurred, strictly proportional to the distance between X and Vo

and

i
/

f(x) max{fi[d(x,vi)] R (1)
is the maximum loss. The problem of interest is to find x* in T to mini-
mize f defined by (1). One may wish to employ such an approach when it is
more important to provide quick service than to minimize total cost.

So as to state the problem more precisely, denote the diameter of
the tree by §. We assume fi is a strictly increasing, continuous function,
with domain [0,8], for 154ifm. Also we define f* = f(x*); continuity and

compactness considerations assure the existence of a minimum of f.

The assumed properties for each fi are quite weak, compared to assumptions




in earlier related literature. To the best of our knowledge, Dearing was

the first to solve the problem with these assumptions: all previous work

assumes the functions fi to be linear, and is discussed by DEARINC and
FRANCIS [2].

Subsequent to the analysis we indicate in some detail how our results

differ from Dearing's.
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ANALYSIS

The following definitions facilitate the analysis:

B =X, 2, iy B

MP = {ieM: f*<f (8))
MS = {1 e M : £,(8) < £¥}
a' = max [fi(O) :ie MP]

a I max [fi(O) ¢ 1 e M} |

3
m

min [fi(6) : i e MP)

n = min [fi(d) : i e M)

f'(x) = max [fi(x) s 1 Pl ¥ x e T

We remark that any fis i € MS is a secondary function in the sense that

|
|

it may be deleted from the definition of f without changing f, that is,
f(x) = £'(x)
for all x ¢ T. However, functions fi‘axi € MP are primary functions in the
sense that f may be changed if any such function is deleted.
The above definitions lead to
REMARK 1. (a) MP # ¢.
(b) o' <a < f* <n'.
(c) We may assume a < n without loss of generality.
Proof. (a) The proof is simple and we omit it.

(b) The proof is trivial except for o < f*. Let f(x*) = f*,

We then have
£,(0) < fi[d(x*, ¥yl £ (xh) = IR, l<ic<m,

giving a < f*,




(¢) If a > n then J functions {i and f, such that f,(0) 2 ), thus
J

fj(S) i< fi(O) < a < f*, so the function f, may be deleted from the
definition of f without changing f.

The following remark establishes properties of functions which occur
repeatedly in the subsequent analysis. The proof is straightforward but
tangential to the main body of the development, and we relegate the proof (of
a more extensive form of the remark) to the appendix.

REMARK 2. Let {j, k} ¢ M with j < k. Define the strictly increasing, continuous
function gjk with nonempty domain [ajk’ bjk] by
g., (z) = ffl(z) - f-l(z),
jk j K
where
= £ Gk
acp = max [ €00, £, (0) ]

bjk = min {fj(d), fk(f)].

Also define ij and Bjk by

A

1 , R Pk
£ 6, 0] >0 if  £,(0) (0)

L. = ¢ 0 if fi(O)

ik
‘ f’l[fj(O)] > 0 if fj(o)

fk(O)

v

\ % £,€0

{f d( &t
Bjk = ajk lf d(Vjs vk) — ik

&k if L,, < d(v,s v ).
Rjk - gjk[d(vj’ Vk)] s, R

(a) The condition

d(vj, Vk) j,gjk(z). 2z lnjk, bjk]

is equivalent to




() LEJ=k=4, B, =8, =
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(c) If {3, k} n MS # ¢, “’jk < R

DEFINITIONS

I~

B'= max [BJk: {], k} (o b{P, J < k; if }I‘ﬂ);

g'= -« if |MP| = 1.

= e {3 Bk e , “,;Jl
R max [Bjk ey K M
y' = max [Bjk T S i e
= g « {3 Jre M. 4 <l
Y max [bjk {j, k j < k]
We note that o' < a, B' < B8, y' <y, v' =max (a', B'), and v = max(a, 8),

where the identities for y' and y are due to Remark 2(b).

Some extra definitions are convenient. Given any y ¢ T and nonnegative number

r define N(y, r) = {x ¢ T: d(x, y) < r}, and call N(y, r) a neighborhood

with center y and radius r. Given any u, v ¢ T define L(u, v) = {x € T:
d(u, x) + d(x, v) = d(u, v)}; intuitively, L(u, v) is the unique imbedded

path joining u and v, and has "length'" d(u, V).

We say that a subset S of T is convex (or connected) if L(u, v) < S

for every u, v <« S. HORN [5] proves a 'pair-wise intersection'" result for
trees which, slightly modified, is the foundation of the analysis to follow.

The result states that the intersection of all of the members of a finite
collection of (connected) subtrees of a tree is nonempty if and only if
every pair-wise intersection of subtrees is nonempty. Following Horn's
result, CHAN and FRANCIS [1] prove an analogous pair-wise intersection
property for an imbedded tree: the intersection of all the members

of a finite collection of convex (and compact) subsets of an imbedded tree

T is nonempty if and only if every pair-wise intersection is nonempty.




It is intuitively appealing, and can be proven (see Lemma 1 and
Property 10 of reference 3) that any neighborhood of T is a convex (or
connected) set, and is also compact given rather weak assumptions about T.
Hence as a special case of the pair-wise intersection property of reference
1 we have the following lemma.

LEMMA 1. Given neighborhoods N(yi, ri) of T, 1 < i < m, the conditions

(2), (3), and (4) below are equivalent:

n{N(yi, r): 1l<i<m}#¢ (2)
NGy ) ANG, 1) #0, 1<) <k<m (3)
d(yj,yk)grj+rk,lijik:m. (4)

We remark that the nontrivial part of the proof of the lemma is showing
(3) implies (2). (2) implies (3) trivially, and it is direct to establish
the equivalence of (3) and (4).

We study the function f' in order to minimize f. It is simpler to
develop the theory for f' than for f, and all such theory then applies to
f. Fortunately we do not need to determine the set MP used in defining
f' in order to develop the theory, as we must know f* in order to construct
MP, and f* is what we are trying to find.

In order to minimize f' we study the following equivalent problem:
minimize z
subject to fi[d(x, vi)] <2z, 1 e MP (5a)

« e fa'yn']. (5b)
We comment that (5b) is justified by Remark 1(b).

The following lemma gives conditions equivalent to (5).

LEMMA 2. Each of the conditions (6) through (16), in

conjunction with the condition z ¢ [a', n'], is equivalent to (5):

6




Jxo» fi[d(x, vi)]_i 2, % e MP (6)

3 x®d(x, v) < £;(2), icMP (7)
I xexe Ny, f,7(2), L c M (8)
3 xexen (Nv,, £;(2)): 1 ¢ MP) 9
S(2) = 0 (N(v,, £]7(2)): 1 ¢ MP} # ¢ (10)
NCY, ) fJ—.l(z)) nN(v, £.5(2)) # 0, {4, K} cMP, § <k (11)
d(vy. v < f-j-l(z) + £52), {4, K} e, § <k (12)
d(vjs V) < gy (@), (3, kI <M, § <k (13)
By <% U, Kb 1P, § <k (14)
a' <z (15-a)
g' < =z (15-b)
e (16)

We omit a formal proof of Lemma 2, as in most cases the equivalence of
adjacent conditions is clear. We use the fact that since fi is continuous
and strictly increasing it has an inverse function f;l which also is
continuous and strictly increasing. Likewise gjk has an inverse function which
is continuous and strictly increasing. The equivalence of (6) and (7) requires
z to be in the domain of f;l, zZ € [fi(O), fi(é)], which is implied by
z € [a', n']. The equivalence of (13) and (14) is due to Remark 2(a).
The key equivalence in (5) through (16) is the equivalence of (10), (11),

and (12), which is due to Lemma 1.

Lemma 2 gives
PROPERTY 1. (a) The set of all minima of f is nonempty and con-
sists of S(y'), where y' is the minimum value of f. (b) with z = y',
each of the conditions (5) through (16) is necessary and sufficient for
optimality to the minimax problem. 5

Proof (a) From Lemma 2, since (6) implies (16) we conclude y' is a lower

bound on every value of f. Using Lemma 2 and letting z = yv' in (6) through




(16) it follows since (16) implies (6) that y' is the minimum value of f, and that
S(y') is the nonempty set of all minima of f. (b) This part is immeddate from (a)

and Lemma 2.

Since y' depends on MP, it generally cannot be computed prior to deter-
mining f*. Fortunately, we shall see that y' = y; Yy can be computed.
PROPERTY 2 (a) If y = a = fp(0), then y = f* = y', and p ¢ MP. j

by If y =R = Bst’ with s < t, then y = f* = y' and {s, t} c MP.

Proof (a) Property 1 gives f* = y', so that a < f* = y' < y. Thus y = a ]

o

implies y = f* = y'. Further, we know fi(O) < f* for i € MS, so fp(O) =y = f*

implies p ¢ MP. (b) Property 1 gives y' = f*, so B' < y' implies

3‘ < f*. For any Bjk not used in computing B', j € MS a& k ¢ MS, so

*
Remark 2(c) implies Bjk < f*, Thus for every Bjk’ Bjk < f*,

so that B < f*¥, Thus B < f*'= y' <y =g, so vy fx = ',

1]

Since Bst = f*, Remark 2(c) implies {s, t} n MS = ¢, and so {s, t} c MP.
Given y = f* we now proceed to characterize the minima of f. Since y =

max(a, B)hit suffices in turn to consider the cases y = o and Yy = B.

PROPERTY 3. 1If y = fp(O) for some p € M, then vp is the unique minimum of f

and p € MP.

Proof. Property 2 gives y = y' and p ¢ MP. Thus, be Property 1, S(y) = S(y') is 4

the nonempty set of minima of f. As y' = fp(O), f;l(y') = 0, so the definition
of S(y') gives

= LS - “leon =
¢ # S(y) = s(v") N(Vp, fp <" {VP},

and hence vp is the unique minimum of f.

CIPR FIPSSIRES ST BRI




We now consider the remaining case where y = § for some vS and v

st t

and y > a. The following preliminary remark is useful.
REMARK 3. Suppose y > a and for some distinct vs and vt with s < t, that

y=8_ = (£}

S -
ee = (5 + £.076140v,, vOT = g ld(v,, v)1. (D)

The following conclusions may be drawn.

(a) We have
£hn + 1) = Ay, v,) (18)
s t L= i =

i min (€' (), £.7(] > 0. (19)

(b) 3 x*, x* € L(vs, Vt)’3

1
=

d(v,, x*) = fS ) - (20)
(c) Let x* ¢ L(vs, vt) 3 (20) holds. We have % # x* # Ve
d(x*, v,) = f;l(y) (21)
and
N(vg, £55(N) 0 N(v, £07(n) = {xk). (22)

Proof. (a) (18) follows immediately by applying (f;l + f;l) to (17).

Since vy > a, y > fs(O) and y > ft(O), S0 f;l(y) > 0 and f;l(y) > 0,

establishing (19).

(b) From (a) we have 0 < f;l(y) < d(vs, Vt)’ so continuity considerations and

the intermediate value theorem, as discussed in reference 2, assure the existence

of x* satisfying (20).

(c) Since x* ¢ L(vs, Vt)’ from (a) we haveﬂ
d(vs, x*) + d(x*, vt) = d(vs, vt) = f;l(Y) 55 f;l(y). (23)

(20) and (23) now give (21). (22) then follows from (20), (21), and

the fact that x* ¢ L(vs, vt). Then (19), (20), and (21) imply 8 # x* # Ve

We now employ the remark.
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PROPERTY 4 . Suppose y > a, and we have y = Bst for some distinct v, and v,
with s < t. Let x* ¢ L(vs, Vt) be such that d(vs, x*) = f;l(y) : x* is the

unique minimum of f, and L # x* # s Also, {s, t} c MP.

Proof. Property 2 gives y = y' and {s, t} ¢ MP. Thus from Property 1, the
definition of S(y'), and Remark 3, we have ¢ # S(y) = S(y') © N(vs, f;l(Y))
n N(vt, f;l(y)) = {x*}, and hence x* is the unique minimum of f. Remark 3
also gives v # x* # ¥+

Parenthetically, we observe that when d(vj, vk) < L., Remark 2 gives

jk
Bjk = max[fj(O), fk(O)], so that Bjk < a. Thus with

[ if d(vy, v) <Ly foralll<j<kz<m

B* = ik
inmx{ejk: {3, k} e M, j <k, ij < d(vj, vk)} otherwise
we have y = max(a, B*), a fact that may possibly permit Y to be computed
more efficiently than by using Y = max(oc, B).
To summarize our analysis, all of the basic results evolve from Lemma 2,
which in tura relies upon the pair-wise intersection property of Lemma 1.

Given y = y', the equivalent conditions of Lemma 2 immediately imply that

Yy = f*, and lead naturally to procedures (Properties 3 and 4) for computing

the unique minimum.

‘ Dearing studies properties of the minimax problem for more general norm-
derived distances than the one we consider, and presents a number of properties,
including a proof that y < f*. When distances are rectilinear between pairs

3 of points in the plane, he uses a version of the pair-wise intersection pro-

: perty to show y = f*, For the tree problem, he points out that his analysis
establishes f is strict quasiconvex, and that his analysis can be adapted to

show thav f has a unique minimum and provide the procedure (which we state

in Properties 3 and 4) for computing the minimum.
The major difference between our development and Dearing's is the way in

which all our basic results evolve naturally from Lemma 2. This evolution
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in turn entails proofs different from Dearing's. In addition, we believe

Remark 2, Lemma 2, and Properties 1 and 2, to be new. Finally, we remark

that our analysis can be used readily to establish that y = f* when distances
are a) rectilinear betweeen pairs of points in the plane or b) Tchebyshev
between pairs of points in Euclidean p-space, p > 1: for these cases
alternative global minima may exist. Properties 3 and 4 can be modified to pro-

vide procedures for constructing all alternative global minima.
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APPENDIX
REMARK 2. Let {j, k} ¢ M with j < k. Define the function Bk with domain
8., (2) = £:1(2) + £, (2)
jk J k :

where

i

aj, = max [£,(0), £,(0)]

bjk

The following assertions are true.

"

min [fj(é), fk(S)].

@ [ay,: byl # 6.

(b) gjk is strictly increasing and continuous, and has raage [L K’ Ujk]’ where

h|
a3
£ £,(0] >0 if £,(0) < £,(0)
Ly (0 if £,00) = £,(0)
..1 A
£ [£,(0)] >0 if £(0) > £ (0)

f;1[fj(6)] +8<28 Af £,(6) < £,(8)
Uy = (26 LE £,(6) = £,(8)
fgl[fk(d)] +6<26 4f £(8) > £(8)

Also, ij CA( IRC S

jk
(c) d(vj, vk) lies in or below the range of gjk'

(d) The inverse function of gjk’ ggi, exists, is strictly increasing and

continuous, has domain [ij, Ujk] and range [ajk’ bjk]'
(e) Define Bjk by
Bjk - 8y if d(Vj, vk) E.ij-

-1
The condition

d(vjs Vk) = gjk(z)’ Z € [ajk’ bjk]

12




is equivalent to

Bjk <z ze€ [a b

3k Pyl
(f) 1If j =k =1, Bjk = Bii = fi(O).

(g) If {j, k} n MS # ¢, eJk < fx,

Proof (a) For i ¢ {j, k}, fil has domain [fi(O), fi(d)]. As the domain of gjk

is the intersection of the domains of f;l and f;l,

[ajk’ bjk]' a < n implies ajk < bjk’ S0 [ajk’ bjk] # ¢ by Remark 1 (c).

the domain of gjk is thus

(b) It is well known that a sum of strictly increasing, continuous functions
is strictly increasing and continuous, implying in turn that the range of
By 12 [gjk(ajk), gjk(bjk)]-
Due to the similarity of the various cases of this part of the proof,
we consider only the cases of fj(O) < fk(O), and fj(G) < fk(a).

Srel -1
When fj(O) < £,(0) < £.(8), fk(O) is in the range of fj’ S0 ij fj [fk(O)]

is well defined, and 0 < Lji < 6. As £,(0) < £,(0), gy (ay) = 8y, [£,(O)] =
5] + £ O] = £]11E 0] + 0 = L.

When £,(0) < £,(8) < £,(8), £,(8) 1s in the range of f,, so Uy = f;l[fj(é)]
is vell defined and 0 < Uy, < 6. As £,(8) < £,(8), g5y (byy) = By, [£,(O)] =
f’j‘l[fj(a)] + fil[fj(é)] =5+ fil[fj(G)J = Uy

(¢) As 0 < d(vj, vk)_g §, and since we know 0 < ij A UJk < 268, the
conclusion follows.
(d) Since gjk is strictly increasing and continuous, it has an inverse function,
g}i, which is also strictly increasing and continuous. The domain of g;i is

-1
the range of gjk’ and the range of gjk is the domain of gjk'
(e) If d(vj, Vk)-i ij, as ij is the minimum value of gjk the equivalence
of the two conditions is immediate. When d(vj, vk) > ij, by part (c) d(vj, vk)
is in the range of gjk’ in which case applying ggi to the first condition

gives the second, while applying gjk to the second condition gives the first.

13




(f) When j = k = i, we have Bjk = ajk . Ry ™ fi(O).

(g8) When {j, k} n MS # ¢, the definition of MS gives b ™ min[fj(G),

|
£,(6)] < £%, 50 as B, < by, we have Byy < %

ISERE
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